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The Long-Range Force between Chemisorbed Atoms 
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"There is now general agreement about the fact that forces between molecules 
are of electromagnetic origin and are due to the electromagnetic fields which 
surround such molecules, in their interaction with the charges in each of them 
and causing a distortion in their distribution. It is also clear that those inter­
actions have to be described according to the rules of wave mechanics." 
P. DEBYE1 

Abstract: The Hamiltonian operator for two hydrogen atoms chemisorbed on a metal is examined. The direct 
Coulomb interactions between the chemisorbed atoms are screened, and, as a result, indirect interactions via the 
conduction electrons in the metal become important. Three such couplings exist, but the long-range force is due 
to the sharing of electrons between a chemisorbed atom and the metal: one chemisorbed atom distorts the elec­
tron distribution in the metal; another interacts with this distortion. 

The theoretical basis for a long-range interaction 
between two atoms chemisorbed on a metal has 

been known for some time,2 but the quantitative treat­
ment of the phenomenon is still in its early stages.3 

An investigation3b using a model Hamiltonian similar to 
that first used by Anderson4 to treat magnetic impuri­
ties in simple metals shows that there is a long-range 
(inverse square) interaction energy between chemisorbed 
atoms which is oscillatory (attractive or repulsive de­
pending on distance), nonisotropic, and dependent on 
the crystal face on which the atoms are chemisorbed. 
The range and the oscillatory character of the inter­
action are general consequences of the model Hamil­
tonian used, and, since this Hamiltonian is a very simple 
one, it is important to examine its validity. We shall 
show in this paper that this simple model Hamiltonian 
contains everything needed to describe correctly the 
long-range interaction between chemisorbed atoms. 
This is an important result. It does not, however, 
imply that the heat of chemisorption of an atom (or 
molecule) can be calculated with such a simple Hamil­
tonian. In the course of our discussion, we shall drop 
many terms which contribute to the heat but not to the 
interaction. 

The Hamiltonian 

We consider two hydrogen atoms A and B near a 
metal surface. The metal consists of ion cores with 
charges Ze at positions Rg and valency electrons. Let 
RA and RB denote the positions of the two protons, 
r, that of the z'th electron, and T4 its kinetic energy; then 
when the ion cores and the two protons are fixed, the 
Hamiltonian function is that given in eq 1. The last 
three terms describe the Coulomb interactions of the 
metal ion cores with one another, and with the two 

(1) From his summary of the anticipated contents of the Study Week 
on Molecular Forces, organized by the Pontifical Academy of Science, 
and held in Vatican City in April 1966. 

(2) (a) T. B. Grimley, "Chemisorption," W. E. Garner, Ed., Butter-
worth and Co. Ltd., London, 1956, p 26; (b) J. Koutecky, Trans. Fara­
day Soc, 54, 1038 (1958). 

(3) (a) T. B. Grimley, Pontificiae Academiae Scientiarum Scripta 
Varia n. 31, Study Week on The Molecular Forces, Vatican City, 18-23 
April 1966; (b) T. B. Grimley, Proc. Phys. Soc, 90, 751 (1967). 

(4) P. W. Anderson, Phys. Rev., 124, 41 (1961). 
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protons. We assume that the equilibrium positions 
of the metal ion cores do not change when the separa­
tion of the two chemisorbed atoms is changed. Conse­
quently the last three terms in (1) do not contribute to 
the interaction between chemisorbed atoms, and we 
shall therefore drop them in what follows. 

We write the quantum mechanical operator corre­
sponding to (1) in the language of second quantization 
because we wish to approximate the Hamiltonian opera­
tor itself, not its wave functions. Following Anderson4 

we choose a representation consisting of a set of spin 
orbitals 4>y„ for electrons in the conduction band of the 
metal, and the Is atomic spin orbitals </>A<7 and 0Bl7 for 
electrons in the two hydrogen atoms, a specifies the 
spin, and is either f or \ , but to make our formulas less 
cumbersome we often contract k<r to the single symbol 
k, and we use 0 F or cf>G to denote any atomic spin orbital. 

The atomic orbitals 0A and <f>B are orthogonal only 
when |RA — RB| is large, so choosing our representation 
in this way restricts us at the outset to a discussion of 
the long-range interaction between chemisorbed atoms. 
This restriction can be avoided if </>A and <f>B are replaced 
by the lo-g and \cru molecular orbitals of either H2 or 
H2

+, but we shall not pursue this here. The conduction 
band orbitals fa are not eigenfunctions of the ion core 
potential — SgZe2/|r — Rgj; they are eigenfunctions of a 
certain self-consistent crystal potential, e.g., Vcp. The 
details of this crystal potential will not concern us at 
present. 

In the formalism of second quantization, every spin 
orbital fa„ (n = k, A or B) has associated with it 
creation, destruction, and number operators, cM„+, 
C1117, and H1U,, respectively, and the Hamiltonian operator 
is a function of these operators. Dropping the last 
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three terms in (1) and remembering that |RA — RBI is 
large so that <f>A and <£B do not overlap, the result is 
eq 2. Here E is the Is orbital energy of hydrogen, and 

H = (E + X)YJHF + E(«k + *kk)"k + l/(«At»A* + 

"Bt "Bl) + Hn + Hs + AH + Hc + 

RA R I 
(2) 

the orbital energies of electrons in the conduction band 
of the metal are €k. 

R i + E 
Ze2 

r - R2 
(3) 

is the shift of the Is energy of atom A in the field of pro­
ton B and the metal ion cores 

Xki = - ( k 
R^ + R i 

(4) 

so that Xkk is the energy shift of the conduction band 
state 0k in the field of the two protons on the surface 
of the metal. # m i x describes the sharing of the elec­
trons between the metal and the chemisorbed atoms 
(eq 5), where T is the kinetic energy operator. Hmix 
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gives rise to the |RA — RB|~2 interaction referred to in 
the introductory section. Hs, defined by (6), describes a 

Hs = T1'XaCi+Ci 
kl 

(6) 

scattering of the conduction band states by the two 
protons, and, as we shall see later, leads to an inter­
action between the chemisorbed atoms. The term 

AH = - £ ( k £ 
Ze2 

R, 
+ K J l (7) 

is present because the states <£k are not eigenfunctions 
of the ion core potential but of Vcp, but we shall see 
later that AH is cancelled by some of the terms in HQ. 
All Coulomb interactions of electrons in the metal with 
one another, and with electrons in the chemisorbed 
atoms as well as the Coulomb interactions of electrons 
in atom A with those in B, are contained in Hc; the 
Coulomb interactions between electrons in the same 
chemisorbed atom A or B are written explicitly (the 
third term) in (2). Hc has ten terms (eq T). The four 
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index symbols like Qkimn, for example, stand for the 
matrix elements of the electron interaction 

iklmn = kl 
H 

mn 

and the quantity U in (2) is QAtAiAtAj- Finally the 
last term in (2) is the Coulomb repulsion of the two 
protons. 

Of course the Coulomb terms Hc make the Hamil-
tonian (2) very difficult to handle, but they play an 
essential role in our problem because they shield many 
of the simpler terms in H. 

Screening and Shielding 

The terms 

Z*kk«k + Hs 
k 

(8) 

in H describe the perturbation of the conduction band 
electrons by the two protons on the metal surface. This 
perturbation induces a change in the electron density in 
the metal near the two protons, and as a result the elec­
trical potential of the two protons is screened. If we 
ignore Hc, in particular the first term which describes 
the Coulomb interactions of the electrons in the metal, 
the screening charge induced in the metal by each 
proton turns out to be infinite. This is wrong, of 
course; the first term in Hc cannot be ignored because it 
responds to the perturbation 8. Through this response, 
the effect of perturbation 8 on the system is shielded, 
and the screening charge induced by each proton is 
reduced to one electronic charge. The final situation 
is that, by screening, the long-range Coulomb potential 
of each proton is changed in the metal into a short-
range screened potential which is generally nonisotropic. 
Thus 

RA r - Ri 
W(T - RA) + 

w(r - RB) (9) 

and the energy shifts Xkk and the quantities Xa in Hs be­
come matrix elements of a potential which is localized 
near the two protons A and B (eq 10); we notice 

*kk —>• Aek = 2wkk(0) 

Xki —> WW(RA) + WM(RB) 

WH(R) = (k|w(r - R)Il) 

(10) 

that the level shift, which we now call Ae^, is independent 
of RA and RB. 

When |RA — RB| is large, it is clear that, seen from A, 
proton B and its induced screening charge in the metal 
appear as an electric dipole. Consequently, a second 
effect of the screening charges is to change the e2/|RA — 
RB| repulsion of the two protons into an interaction 
which, for large values of jRA — RBj, becomes a dipole-
dipole repulsion varying as |RA — RB|-
Is energy level shift of eq 3 is changed. 

Similarly the 

AE = - ( A 
Ze2 

g lr — Rgl 
A ) + 

0(| RA - RBJ- 3) (H) 

The changes expressed in (10) and (11) involve the 
Coulomb terms Hc only indirectly as a result of the 
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response of these terms to a perturbation. However, 
the Coulomb terms have important direct effects, and 
we now examine these. 

The first term in Hc describes the Coulomb inter­
actions between electrons in the metal, and it is well 
known that these interactions are screened. In any 
case this term has no explicit dependence on RA and RB, 
and because of this it does not cause any serious dif­
ficulty in our problem. Its important direct effect is to 
cancel AH in (2). To see this we put either n = k or 1 
or m = k or 1 so as to get a number operator and the 
product of two Fermion operators. This gives the 
term 

Z ( Q k m l m - 2 k m m l ) « m C k + C l ( 1 2 ) 
klm 

and if we now make an approximation by replacing the 
number operator by its expectation value in the ground 
state of the unperturbed metal, the coefficient of Ck+Ci 
in (12) becomes the kl matrix element of the Coulomb 
and exchange potential acting on an electron in the 
unperturbed metal. But this potential, when added 
to the ion core potential, gives the self-consistent crystal 
potential Vcp in (7). Hence the term 12 cancels AH in 
(2). 

The other nine terms in H1. involve one, or both, of 
the positions RA and RB explicitly, and since these 
terms cannot be handled exactly, we shall have to make 
an approximation if we are to discuss their effects. 
The approximation we make is the same as that already 
made in connection with (12); namely, we only retain 
those four-Fermion terms which are the product of 
two Fermion operators and a number operator, and we 
replace the number operator by its expectation value 
in the Hartree-Fock ground state. Thus from the 
second and third terms in Hc we only retain 

Z)I(CFIkI + £>Fllk)«lCF+Ck + (QkIFl ~ 2lkFl)«lCk+CF} 
klF 

and adding this to the eighth and ninth terms in HQ we 
find, after replacing number operators by their expecta­
tion values, a contribution to H which has the same 
form as //m i x in (5) but with FFk replaced by 

Z(SFlM - QFUk)"l + ZQFGkG«G (13) 
1 G ^ F 

But expression 13 is the Fk matrix element of the 
Coulomb and exchange potential experienced by an 
electron in the system metal plus chemisorbed atoms 
in the Hartree-Fock ground state. Consequently the 
direct effect of these Coulomb terms is to change the 
meaning of KFk in (5) so that 

K F k — > < F | J + KscFJk) (14) 

where KSCF is the potential energy operator for an 
electron in the Hartree-Fock self-consistent field of the 
system. 

The fourth and fifth terms in Hc make no contribu­
tion to H in our present approximation. The sixth 
and seventh terms contribute 

Z(QFkFk — QFkkF)«F«k + 
kF 

Z(QFkFl — QFklF)«FCk+Cl -ZQFkkG«kCF+CG (15) 
klF kFG 

(k?M) 

The first term in (15) will, after replacing «k by its ex­
pectation value, correct the Is level shift AE for the 
Coulomb and exchange interaction of the electrons in 
the chemisorbed atom with those in the metal. In the 
second term we replace nF by its expectation value to get 
a contribution with the same form as Hs in (6) but with 
the kl matrix element of the Coulomb and exchange 
potential of the electrons in the chemisorbed hydrogen 
atoms replacing that of the Coulomb potential of the 
protons. We have seen that the latter is screened 
in the metal, and the Coulomb and exchange potential 
of the atomic electrons will be screened in the same way. 
Consequently, although the exact definition of the 
matrix elements xki in Hs is changed by these terms in 
Hc, the general conclusion that they are matrix elements 
of a potential which is localized near the two protons is 
not altered, and this is important in our present prob­
lem. The third term in (15) is an important contribu­
tion to H, and we consider it in detail later. 

The tenth term in Hc is the Coulomb interaction of 
the electrons in one chemisorbed atom with those in 
the other, but an electron localized on a chemisorbed 
atom induces screening charges in the metal (through 
the sixth term in Hc) which change this Coulomb inter­
action of the electrons, just as that of the two protons is 
changed, into a repulsion varying as ;RA — R B h 3 when 
|RA — RB is large. 

Taking all the above modifications into account, 
formula 2 for H now becomes eq 16. 

H = (E + A£)2>A, + "B.) + Z(*k + A«kK, + 

E/(«At«Aj + «Bf"B|) + Hmix + Hs + 

#ex + Hc' + 0(|RA - RB|-3) (16) 

Hmix is defined by (5) but with KFk changed in accor­
dance with (14), and 

#• = 5 ' I W*(R A) + W"»(RB) 1Ck+Cl (17) 

with WW(RA) the kl matrix element of a short-range 
potential localized on atom A, and WU(RB) the same 
for atom B 

#ex = — Z(^AB CA(7
+CB„ + ./BACBa+CA,) 

V , ( 1 8 ) 
JAB = Z QA<7k.7k<rB<7 «k<r 

and Hex is an indirect interaction of the two chemi­
sorbed atoms via the exchange interaction of their elec­
trons with the electrons in the conduction band of the 
metal. Finally Hc' contains all those Coulomb terms 
whose effects are not included either in the screening 
and shielding discussed in this section, or in the self-
consistent potential KSCF. The principal effect of 
these terms is to shield Hmix, Hs, and //ex in the sense 
that they alter the exact definitions of KFk, Wki, and7AB . 
We shall not therefore consider them in detail. We 
have indicated in (16) that terms asymptotically propor­
tional to |RA — R B I - 3 have been dropped. It is im­
portant to remember this. 

Indirect Interactions 

The interaction between two chemisorbed atoms aris­
ing from the term Hmix in (16) has already been ex­
amined in detail.3*3 The interaction energy is oscil­
latory but falls off like |RA — RB|~2- We shall now 
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derive the asymptotic forms of the interactions arising 
from Hs and Htx. We can use perturbation theory 
for this taking the first three terms in (16) as the unper­
turbed Hamiltonian; both terms contribute separately 
to the interaction in second order. The interaction 
energy from Hs is 

Ws = 2y>kl(RA)>vlk(RB)/(ek - «i) (19) 
1 > £ F 
k < k F 

where kF defines the Fermi level, and that from Hex is 

W'ex = -4 | / A B | 2 / t / (20) 

Wex actually stabilizes an antiparallel alignment of 
spins on the chemisorbed atoms, but this aspect of Hex 

will not detain us here. 
To evaluate the matrix elements in (19) and (20) we 

expand the conduction band wave functions <pk in 
terms of the point Wannier functions a(r — Rg) centered 
on the lattice points Rg of the semiinfinite metal 

<Mr) = E l / (k , RgMr - R 8 ) (21) 
g 

Since w(t — RA) is a short-range potential, the main 
contribution to WU(RA) comes from the Wannier func­
tion on the lattice point, R0 say, over which atom A is 
adsorbed. Hence 

WB(RA) ^ wU*(k, R0)U(I, R0) 

where w is independent of k and 1. 
The periodicity of a semiinfinite metal is described 

by only two primitive translations which depend on the 
surface plane, and which define a two-dimensional sub-
space of the usual k space. If k ' is a vector lying in this 
subspace then, because RB — RA lies in the surface 

4>k(r + RB - RA) = exp{zk'-(RB - RA))0k(r) (22) 

Consequently wlk(RB) and Wik(RA) are related 

wlk(RB) = exp{/(l' - k ' H R „ - RA)}wki(RA) 

and hence 

wkl(RA)wlk(RB) ~ I w tf(k,R„) C/(l,Ro)|2 

exp{j(T - k')-(RB - RA)) 

If we substitute this into (19), ignore the dependence of 
f/(k,R0) on k, and assume a free-electron energy spec­
trum for electrons in the conduction band, the right-
hand side of (19) is easily evaluated.5 The result is that 
Ws has the range factor F(2kj\RA — RB|), where 

F(x) = (x cos x — sin x)/xi 

Hence Ws falls off like JRA — RB j - 3 , and since we have 
already dropped terms of this sort in arriving at (16), 
it is now clear that we cannot retain Hs either. 

(5) See e.g., C. Kittel, "Quantum Theory of Solids," John Wiley and 
Sons, Inc., New York, N. Y., 1963, p 364. 

To evaluate JAB in (18) we again use (21) and (22) 
and assume that the main contribution comes from the 
Wannier functions on the lattice points over which the 
atoms A and B are adsorbed. Thus 

2A.k,k,B, =* |^(k,Ro)|2 exp{ik''(RB - RA)} 

where v is independent of k. Treating the conduction 
band electrons as free and ignoring the k dependence of 
C/(k,Ro), we now find that 

7AB oc 2fcF|RA - RB|F(2£F|RA - RB|) 

Hence JAB falls off like |RA - RB|-2, and from (20) 
this means that Wex falls off like |RA — RB|~4. Conse­
quently Hex cannot be retained in (16). This leaves 
only Hmix and the Coulomb terms HJ to provide a 
coupling between the chemisorbed atoms. We recall 
that Hmix gives rise to an interaction Wmix which falls 
off like IRA — RB |~2, and we have now verified that there 
are no interactions having a longer range than this. 
With perturbation theory we would have to go to fourth 
order to calculate Wmix because Hmix is a typical "field-
particle " interaction,3" but Wmix can in fact be evalu­
ated without using perturbation theory.3b We note 
that none of the Coulomb terms in Hc' will commute 
with Hmix, and therefore they all contribute to its shield­
ing. The calculation of the shielded matrix elements 
which replace V?k in Hmix is an important problem for 
future work. 

Although Wmix has the longest range of all the inter­
actions between chemisorbed atoms, its magnitude 
could be so small as to be physically insignificant so 
that in practice one of the shorter range interactions is 
dominant. In particular, it might be that the ordinary 
dipole-dipole interaction between chemisorbed atoms, 
which comes from the terms asymptotically propor­
tional to JRA — RB | - 3 in the Hamiltonian (16), is really 
the important long-range interaction, not Wmix or any 
other indirect interaction. To examine this point sup­
pose that the dipole moment associated with a chemi­
sorbed atom and its screening charge in the metal is 1 
Debye. Then WAi, the interaction energy of two such 
dipoles separated by a distance R, is given by 

when R is measured in angstroms. To estimate Wmix 

we use eq 44 of ref 3b. For hydrogen on tungsten we 
take U= 17 ev and «F = 7.5 eV so that qF = 1.40 X 
10s cm -1. Then with q-pro = q?b = 1, we find 

/4 .8 X 10-12\ 
W011x = y ^ J sin (2.8*) erg 

Consequently Wmix is indeed a physically significant 
long-range interaction, and it dominates WM when R is 
greater than about 0.5 A. 
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